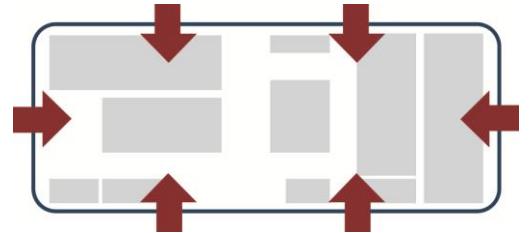


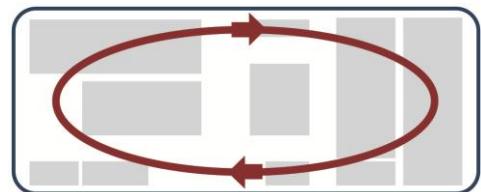
WHY IS BIOSECURITY IMPORTANT AND HOW CAN IT HELP TO IMPROVE PRODUCTIVITY AND REDUCE AMU

Prof. Jeroen Dewulf

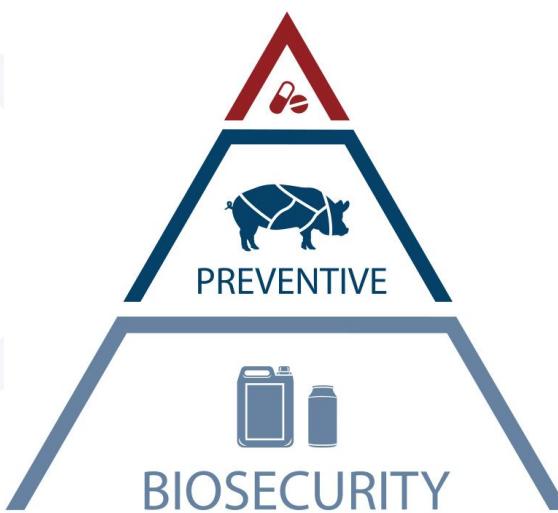
Bio-what ?


BIOSECURITY

=


The application of a set of **management, behavioural and physical** measures designed to reduce the risk of **introduction, establishment and spread** of pathogenic agents **to, within and from** an animal population.

EXTERNAL biosecurity
= reduce introduction



INTERNAL biosecurity
= reduce spread

3

BIOSECURITY is (should be) the basis of any disease control program

4

2

Is biosecurity important?

Epidemic diseases

Sustainability

Endemic and zoonotic diseases

Reduction of antimicrobial use

Biosecurity helps to address of all of these challenges

5

Is biosecurity important?

FAO Report Clears Path to Food Security, climate solutions for animal ag

PATHWAYS TOWARDS LOWER EMISSIONS

There will be a **20 percent increase in demand for animal-source foods by the year 2050** which will increase emissions from livestock production from present level of 6 gigatons to 9.1 gigatons of CO₂eq.

According to the FAO, **increasing productivity** has potential to reduce projected sector emissions by 20 percent by 2050.

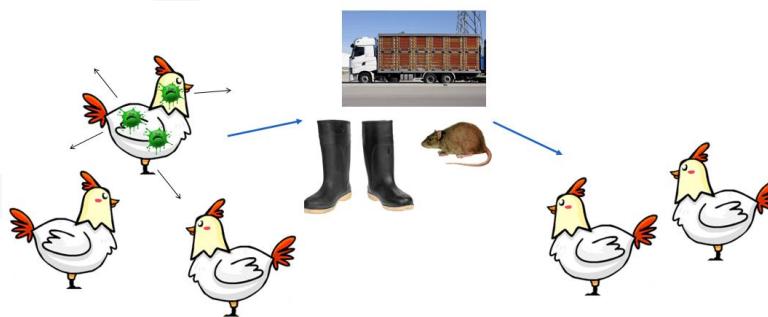
Feed and nutrition improvements have a reduction potential of 12 percent.

Improved animal health have a reduction potential of 10 percent.

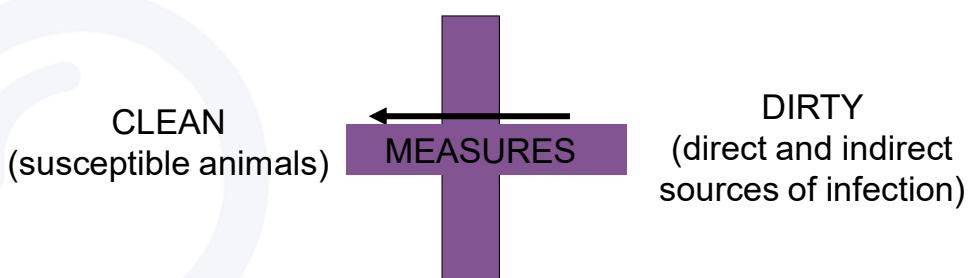
UX BARTS
CLEAR Center

6

3



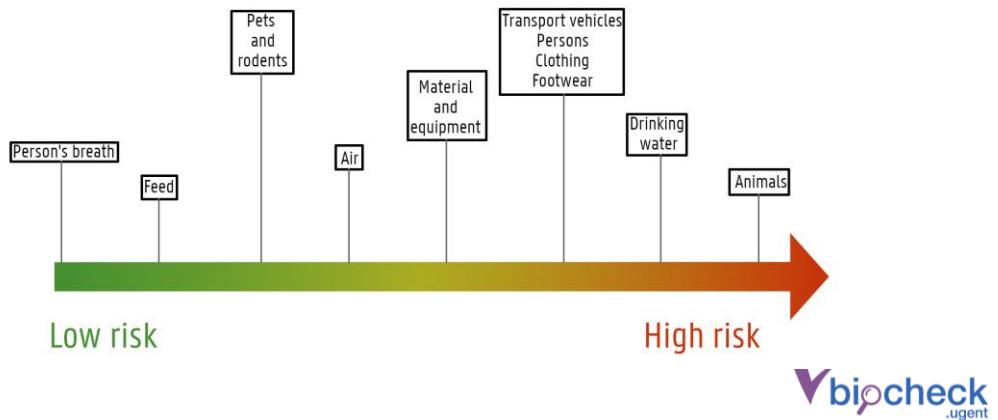
PRINCIPLES OF BIOSECURITY


1) Separation of infectious and susceptible animals

→ avoid both direct and indirect contact!

(*all-in/all-out, working lines, hospital pen, ...*)

PRINCIPLES OF BIOSECURITY



- Dependent upon herd situation (status, type,...)
- Perform well and consequent

Disease	Vertical Transmission	Horizontal transmission	Horizontal spread	Persistance in the environment
<i>Mycoplasma</i> spp.	Yes	Yes	Slow	Low
<i>Salmonella</i>	Yes	Yes	Fast	High
Avian Influenza	?	Yes	Very fast	Low
Newcastle disease	No	Yes	Fast	Low
Infectious laryngotracheitis	No	Yes	Fast	Low
Infectious bronchitis	No	Yes	Fast	Low
<i>Aspergillus</i>	No	No	Environmental contamination	High
Pasteurellosis	No	Yes	Medium	Low
<i>Escherichia coli</i>	No	Yes	Fast	High
Gumboro	No	Yes	Fast	High
Marek disease	No	Yes	Medium	High
Coccidiosis	No	Yes	Fast	High
<i>Clostridium perfringens</i>	No	Yes	Medium	High

PRINCIPLES OF BIOSECURITY

2) Not every transmission route is equally important

11

PRINCIPLES OF BIOSECURITY

3) Reduction of the general infection pressure

→ breaking the infection cycle, reducing the burden on the immune system↓

12

PRINCIPLES OF BIOSECURITY

Where are biosecurity measures most important?

- A. Large herds
- B. Small herds
- C. Independent of herd size

13

PRINCIPLES OF BIOSECURITY

4) Size matters

14

PRINCIPLES OF BIOSECURITY

5. Frequency does matter

'Thousand times a small chance becomes a large chance'

Risk transmission route (p)

Frequency transmission route (n)

$$P = 1 - (1-p)^n$$

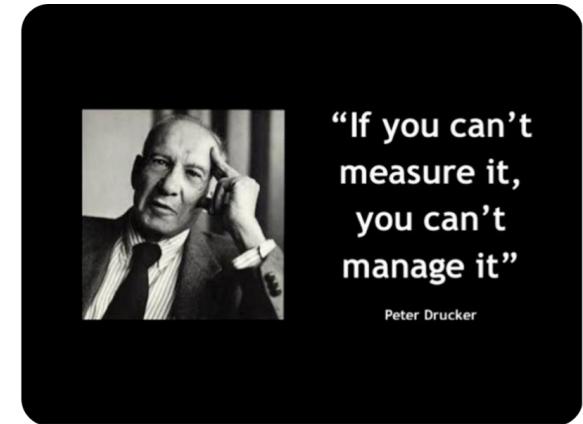
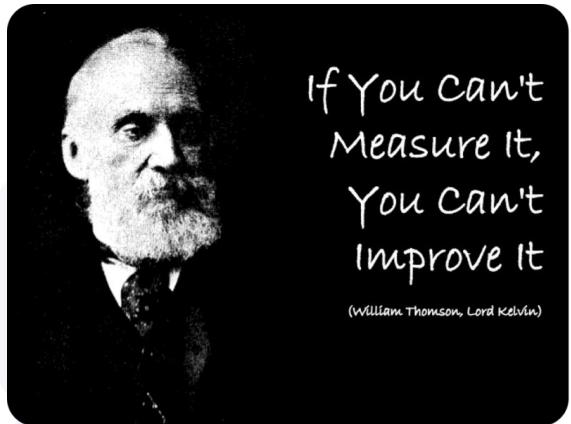
15

PRINCIPLES OF BIOSECURITY

Assume that the risk of disease introduction to your herd through feed delivery is 1 out of 1000, and the feed delivery truck comes weekly.

What is the annual risk?

16



PRINCIPLES OF BIOSECURITY

5) Frequency matters

- 'Thousand times a small chance becomes a large chance'
 - Risk transmission route (p)
 - **Frequency transmission route (n)**
- $P = 1 - (1-p)^n$
 - $p= 0.1\%$ (1 out of 1000)
 - $n= 52$ (e.g. weekly)
 - **5,06% = $1 - (1-0.001)^{52}$**

THE 5 PRINCIPLES OF BIOSECURITY

1. Separate infectious and susceptible animals
2. Not every measure is equally important
3. Reduce the general infection pressure
4. Size matters
5. Frequency matters

19

About biosecurity Our team Our partners FAQ Contact us [My Biocheck](#) EN ▾

[Surveys](#) [Worldwide](#) [Features](#) [E-learning](#) [Other services](#) [Newsletters](#)

Keeping healthy animals healthy!

Biocheck.UGent is a scientific risk-based and independent scoring system to evaluate the quality of your on-farm biosecurity.

Quantify your biosecurity level right now!

20

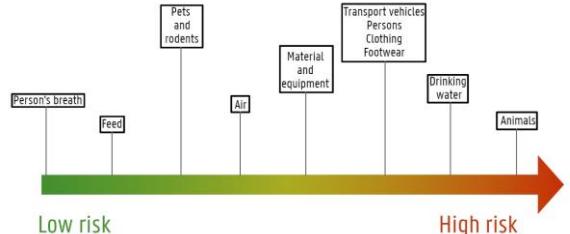
10

BIOCHECK.UGENT

Platform to help increase biosecurity levels

Data-driven recommendations

With the goal to keeping healthy animals healthy


www.biocheckgent.com

21

BIOCHECK.UGENT

Risk based scoring system

Weighted scores

Based on scientific research

Risk for transmission: direct vs. indirect contact

Free for use www.biocheckgent.com

22

BIOCHECK.UGENT

Pig

→ Pigs indoor Preferred

→ Pigs indoor Old version

→ Pigs outdoor

→ Pig backyard/small-scale

→ Veal calves

→ Beef cattle

→ Dairy cattle

→ Dairy-source beef cattle production

→ Free range broilers

→ Free range layers

→ Ducks

→ Backyard poultry

→ Laying hens

→ Broilers

→ Turkeys

→ Breeders

Small ruminants

→ Small ruminants dairy

→ Small ruminants meat

23

BIOCHECK.UGENT

ID: 20388/691653/v2_1/F
 Entry date: 2019-03-10 13:22:08
 Identification:

PIG

Nr	Description	Score	Country average	Global average
<i>External biosecurity</i>				
A	Purchase of animals and semen	100 %	88 %	89 %
B	Transport of animals, removal of manure and dead animals	41 %	70 %	70 %
C	Feed, water and equipment supply	27 %	38 %	50 %
D	Personnel and visitors	41 %	64 %	68 %
E	Vermin and bird control	50 %	64 %	67 %
F	Environment and region	60 %	53 %	64 %
<i>Subtotal External biosecurity:</i>		57 %	66 %	70 %
<i>Internal biosecurity</i>				
A	Disease management	40 %	56 %	67 %
B	Farrowing and suckling period	64 %	59 %	56 %
C	Nursery unit	36 %	65 %	66 %
D	Fattening unit	N/A	72 %	67 %
E	Measures between compartments and the use of equipment	39 %	44 %	48 %
F	Cleaning and disinfection	20 %	48 %	59 %
<i>Subtotal Internal biosecurity:</i>		38 %	55 %	58 %
N/A = Not applicable				
		Total: 48 %	61 %	64 %

24

Quantification of biosecurity status on farm level

- ↳ Comparing scores between different herds
- ↳ Comparing scores between different countries
- ↳ Comparing scores in time
- ↳ Taking different risks into account

25

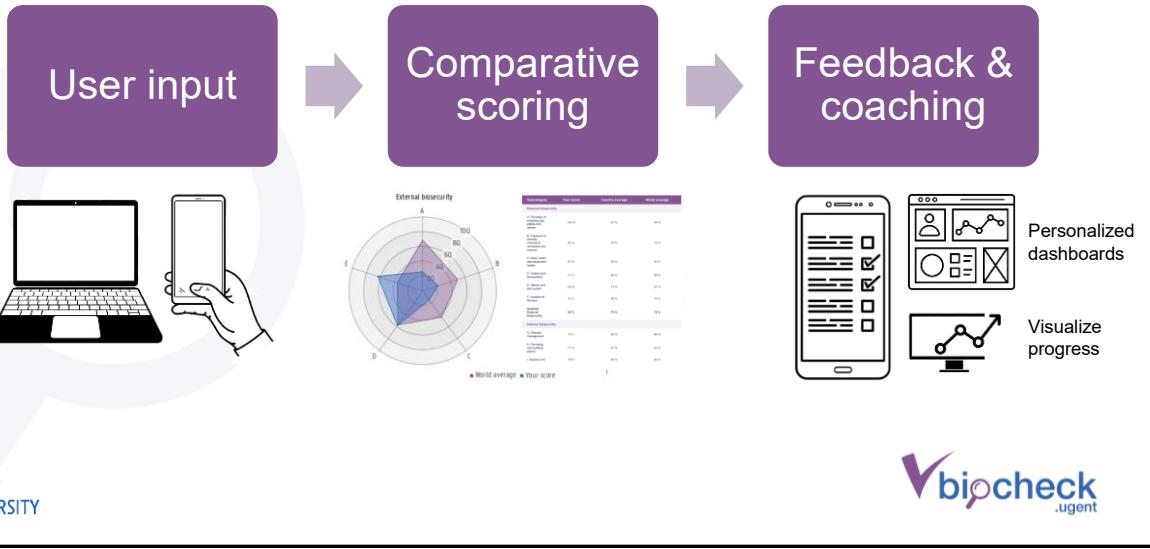
WORLD LARGEST DATABASE ON BIOSECURITY

Worldwide usage of Biocheck.UGent

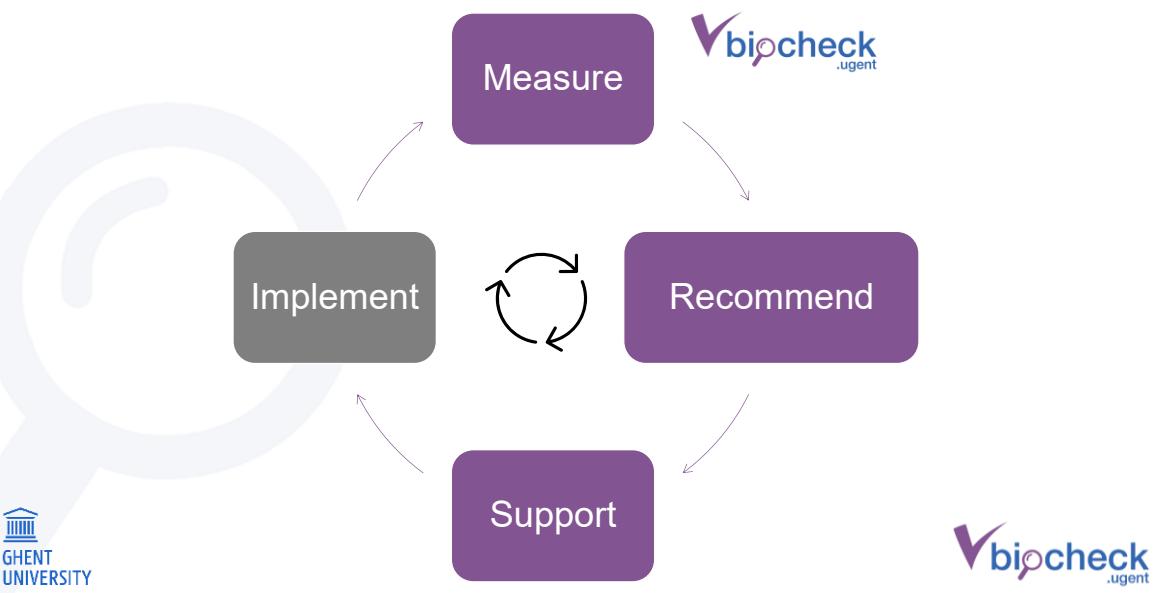
The Biocheck.UGent has already been used **96574** times to evaluate the biosecurity in farms worldwide.

→ Worldwide statistics

1 55,754


National implementation in

- Belgium (pig, poultry)
- Ireland (pig, poultry)
- Finland (cattle, pig)
- Italy (pig)
- Czech Republic (pig, poultry, cattle)
- Luxemburg (cattle, pig, poultry)
- UK (Pigs)
- Scotland (Pigs)
- ...


26

BIOCHECK IS A DECISION SUPPORT SYSTEM

27

CYCLE OF IMPROVEMENT

28

Better biosecurity

Lower antimicrobial use

Lower antimicrobial resistance

29

Impact of biosecurity

The Veterinary Journal 198 (2013) 508–512

Contents lists available at ScienceDirect

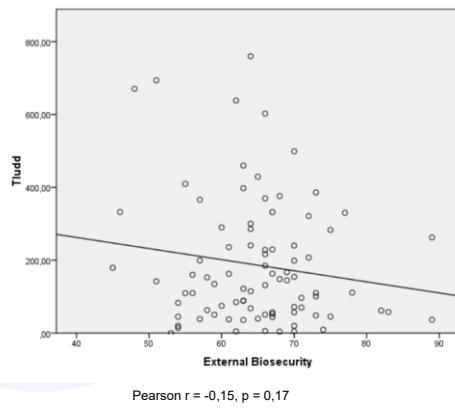
The Veterinary Journal

journal homepage: www.elsevier.com/locate/tvjl

Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds

M. Laanen ^{a,*}, D. Persoons ^{a,b}, S. Ribbens ^c, E. de Jong ^c, B. Callens ^a, M. Strubbe ^c, D. Maes ^a, J. Dewulf ^a

^a Unit of Veterinary Epidemiology, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium



^b Pharma.be, Belgian Association for the Pharmaceutical Industry, 1170 Brussels, Belgium

^c Animal Health Care Flanders, 9000 Gent, Belgium

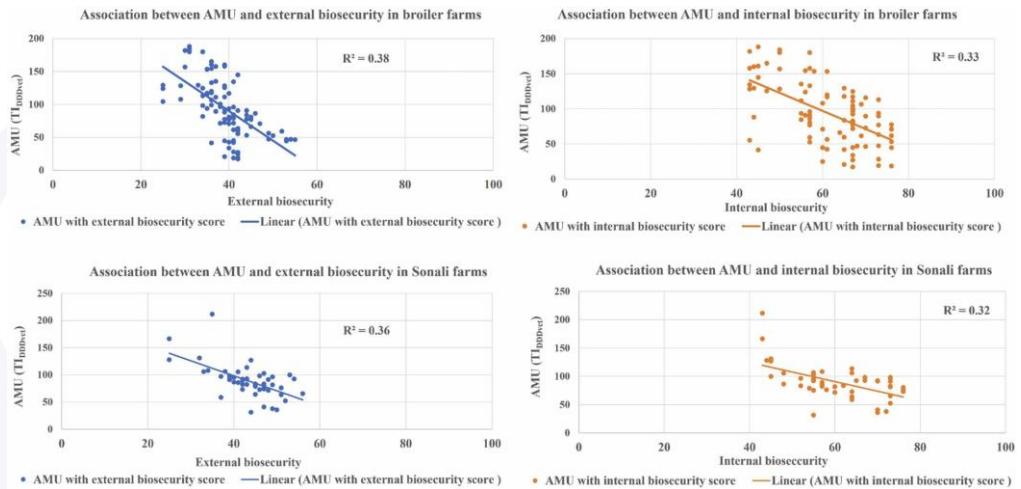
30

Biosecurity vs antimicrobial use

31

Impact of biosecurity

Preventive Veterinary Medicine
Volume 217, August 2023, 105968


Quantitative and qualitative analysis
of antimicrobial usage and biosecurity
on broiler and Sonali farms in
Bangladesh

Nelima Ibrahim ^{a b}✉, Ilias Chantzias ^a✉, Md. Abu Shoib Mohsin ^e✉,
Filip Boyen ^c✉, Guillaume Fournié ^{d f g}✉, Sk Shaheenur Islam ^b✉,
Anna Catharina Berge ^a✉, Nele Caekebeke ^a✉, Philip Joosten ^a✉, Jeroen Dewulf ^a
✉

32

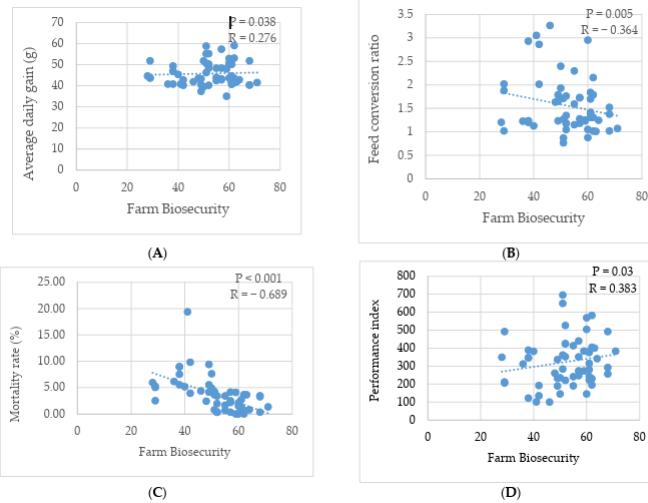
Impact of biosecurity

33

Impact of biosecurity

Article

Impact of Biosecurity on Production Performance and Antimicrobial Usage in Broiler Farms in Cameroon

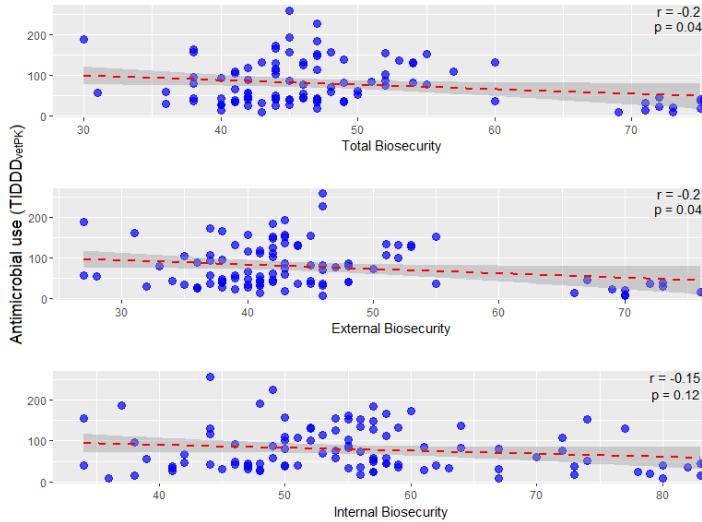

Stephane D. Ziebe ^{1,†}, Ronald Vouga Ngom ^{1,*,†}, Adonis M. M. Akoussa ¹, Henry P. Bogning ² and Henriette A. Zangue ³

Abstract: The broiler industry is the most developed livestock sector in Cameroon. This study aimed to evaluate the relationship between biosecurity implementation with production performance and antibiotic usage in broiler farms in Cameroon. Data concerning biosecurity, production performance (average daily gain or ADG, mortality rate, feed conversion ratio or FCR, and performance index or PI), and antimicrobial usage (AMU) were collected in 57 farms in the Adamawa and North regions. The average total biosecurity score of broiler farms was 52/100. ADG (46.54 ± 5.18 g versus 43.80 ± 4.16 g), FCR (1.59 ± 0.61 versus 1.75 ± 0.58), mortality rate (2.47% versus 6.65%), and PI (339.21 ± 105.79 versus 268.22 ± 101.09) were statistically better in farms with good biosecurity. The majority of antibiotics used (55.2%) were classified as critically important for human medicine, with 83.9% of antibiotics underdosed/overdosed. No correlation was found between biosecurity and AMU, although there was a trend towards reduced use in farms with good biosecurity. The misuse of antibiotics will result in an increased development of antimicrobial resistance, which can be transmitted to humans. This study highlights the importance of biosecurity in improving poultry performance and reducing AMU. Continuous training

34

Impact of biosecurity

Impact of biosecurity


Quantitative assessment of biosecurity on conventional broiler farms in Pakistan

Qamer Mahmood ^{1,*}, Ilias Chantziras ¹, Shafique Ur Rehman ², Mudassar Nazar ³, Jeroen Dewulf ¹

Submitted to Preventive Veterinary Medicine

Impact of biosecurity

The relationship between biosecurity and antimicrobial use

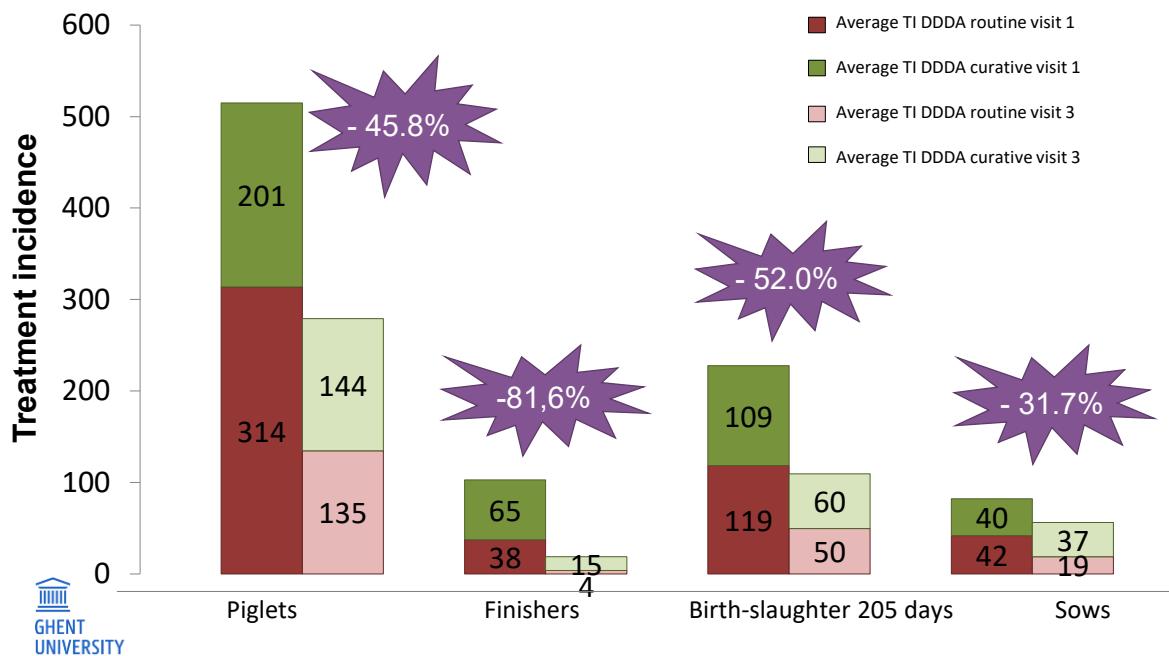
37

Impact of biosecurity

Original Article

Reducing Antimicrobial Usage in Pig Production without Jeopardizing Production Parameters

M. Postma W. Vanderhaeghen, S. Sarrazin, D. Maes, J. Dewulf


38

19

Total biosecurity: + 11,9%

Internal biosecurity: + 18,8%

External biosecurity: + 6,6%

Production results

	VISIT	MEAN	DIFFERENCE	P-VALUE
Weaned piglets per sow per year	Initial	26.4	+1,1	<0.01
	Follow up	27.5		
Daily weight gain fatteners	Initial	667.5	+7,7	0.01
	Follow up	675.2		
Mortality in fatteners (%)	Initial	3.2	-0,6	0.04
	Follow up	2.6		

Postma et al, 2017

41

41

ADVANCE ACCESS

IMMUNOLOGY, HEALTH, AND DISEASE

Biocheck.UGent: A quantitative tool to measure biosecurity at broiler farms and the relationship with technical performances and antimicrobial use

P. Gelaude,*¹ M. Schlepers,* M. Verlinden,† M. Laanen,* and J. Dewulf*

*Unit of Veterinary Epidemiology, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; and †Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium

ABSTRACT The Biocheck.UGent scoring system has been developed to measure and quantify the level of

system and accompanying questionnaire can be filled in for free at www.Biocheck.UGent.be. The obtained

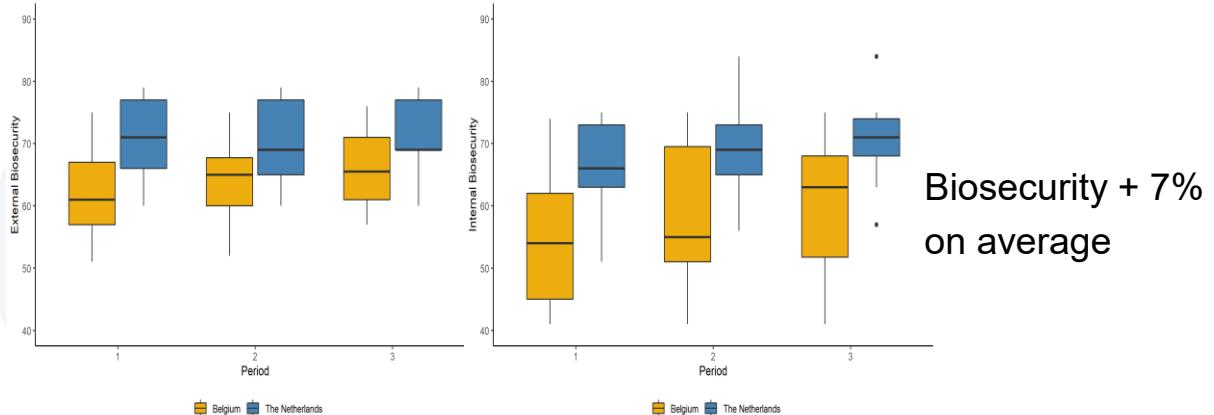
42

Counseling 13 broiler farms to improved biosecurity and reduced AMU

	Before	After	Change
External biosecurity	64	69	+5
Internal biosecurity	73	77	+4
Mortality first week	1,08	1,27	+0,19%
Total mortality	3,54	3,05	-0,49%
Average daily weight gain	57	57	+0
Feed conversion	1,8	1,7	-0,1
Performance index	318	332	+14
Antimicrobial use (TI)	192	136	-29%

43

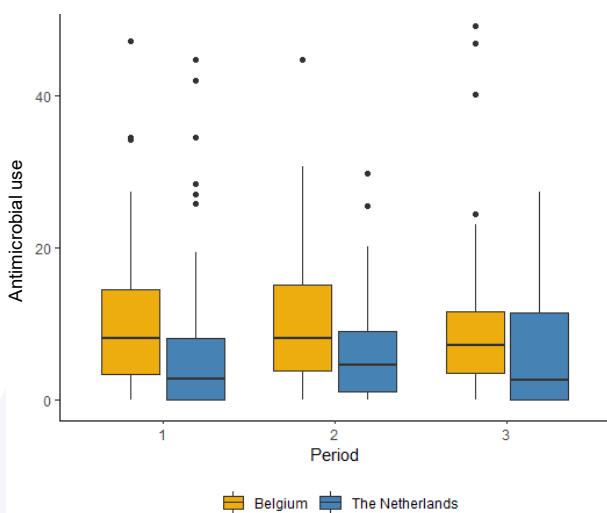
Article


Coaching Belgian and Dutch broiler farmers aimed at antimicrobial stewardship and disease prevention

Nele Caekebeke ^{1,*}, Moniek Ringenier ¹, Franca J. Jonquiere ², Tijs J. Tobias ², Merel Postma ¹, Angelique van den Hoogen ², Manon A.M. Houben ³, Francisca C. Velkers ², Nathalie Sleenckx ⁴, Arjan Stegeman ², and Jeroen Dewulf ¹, on behalf of the i-4-1-Health Study Group

44

IMPACT OF BIOSECURITY



45

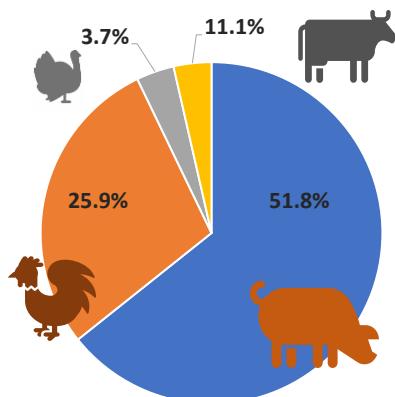
Reduced antimicrobial usage

-7% on average

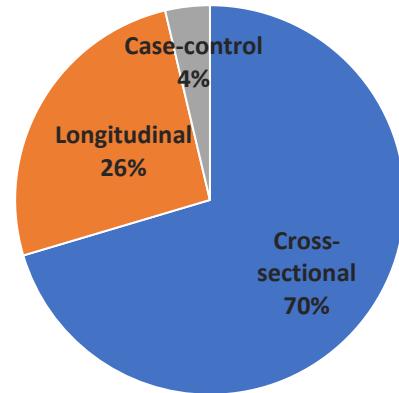
No negative effects on production parameters

46

Review


Can improved farm biosecurity reduce the need for antimicrobials in food animals? A Scoping Review

Pankaj Dhaka ^{1,2,*}, Ilias Chantziras ^{1,*}, Deepthi Vijay ³, Jasbir Singh Bedi ², Iryna Makovska ¹, Evelien Biebaut ¹ and Jeroen Dewulf ¹


47

Species distribution

Two studies included both pigs and poultry farms

Study types

48

Association between farm biosecurity and AMU

- 51.8% (14/27) studies
↑ farm biosecurity : ↓ AMU
- 18.5% (5/27) studies
↑ farm management : ↓ AMU
- 2 studies
↑ coaching & awareness: ↓ AMU
- 1 study
↑ biosecurity : ↓ AMU : ↑ farm economics

5 studies: farm biosecurity & AMU → Uncertain or spurious association

49

TURKEYS

Université de Montréal

Identify risk factors and biosecurity practices impacting HPAI status of commercial poultry farms

- QC: 97 turkey, broiler, layer, breeder, ducks/geese farms
- ON: 39 turkey farms

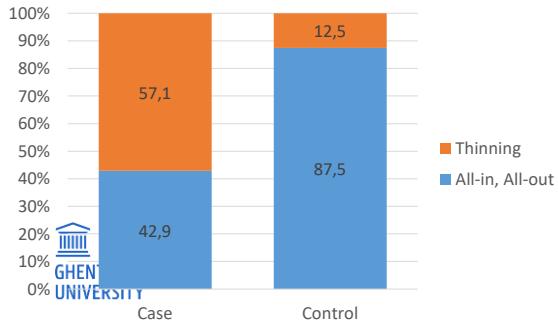
Statistics for Turkeys - Canada

External biosecurity	
A. Infrastructure, location and housing	62%
B. Organization of the farm and supply of materials	71%
C. Visitors and farmworkers	48%
D. Purchase of turkey pouls	50%
E. Depopulation of adult turkeys	66%
F. Feed and water supply	80%
G. Manure and carcass removal	73%
Subtotal external biosecurity	64%
Internal biosecurity	
H. Disease management	81%
I. Measures between compartments	82%
J. Cleaning and disinfection	42%
Subtotal internal biosecurity	66%
Total	50
number of completed surveys: 72	65%

Poultry biocheck.ugent

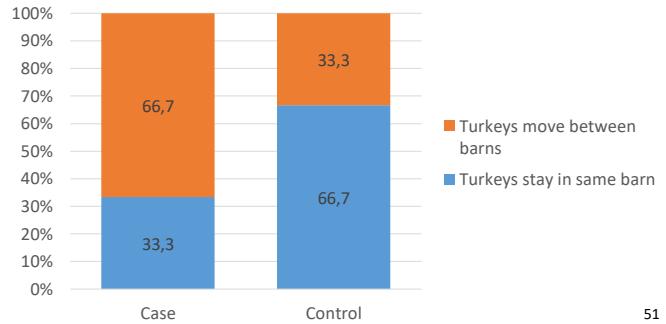
- Laying hens
- Broilers
- Turkeys
- Breeders
- Ducks

50

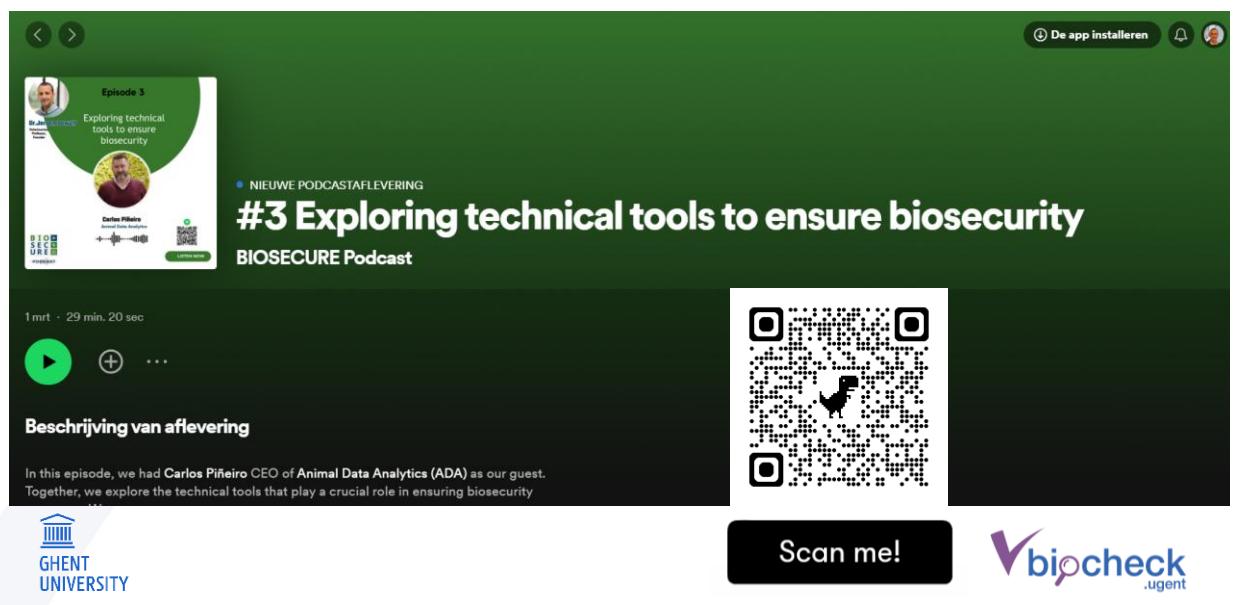

HPAI Case-Control Study in Turkey

Preliminary Descriptive Results

Biosecurity Scores Removal of Turkey


Cases (n=7)	Control (n=16)
67%	74%

Preliminary Results HPAI case-control study in Turkey in Québec - Shipment to slaughter


Question added to Biocheck

Preliminary Results HPAI case-control study in Turkey in Québec - Movements of birds within premises

51

51

Episode 3
Exploring technical tools to ensure Biosecurity

NIEUWE PODCASTAFLEVERING
#3 Exploring technical tools to ensure biosecurity
BIOSECURE Podcast

1 min. 29 min. 20 sec

Beschrijving van aflevering

In this episode, we had Carlos Piñeiro CEO of Animal Data Analytics (ADA) as our guest. Together, we explore the technical tools that play a crucial role in ensuring biosecurity

Scan me!

bipcheck.ugent

52

Jeroen Dewulf Full Professor

FACULTY OF VETERINARY MEDICINE
GHENT UNIVERSITY

E Jeroen.dewulf@ugent.be

T +32 9 264 75 43

www.ugent.be

 Ghent University
 jkdewulf